If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-132x+432=0
a = 6; b = -132; c = +432;
Δ = b2-4ac
Δ = -1322-4·6·432
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-132)-84}{2*6}=\frac{48}{12} =4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-132)+84}{2*6}=\frac{216}{12} =18 $
| 3=2b−1 | | x^2+144=25x | | 8=(9a-5)3/2 | | -7d+7=-10+11d-19d | | -2n+3n-1=1 | | (11/3x)+(2/7)=(5/3x) | | x-0.05x=10698330 | | 3x+8=2× | | 50x+45=2x | | 8=5+3n-2n | | 1f+30=108 | | 4n=n5 | | y=3.9-1.6 | | 4nn=5 | | 0.1r+2.5=3.1 | | 21=-7x+4(x+6) | | -9=-2n-4-3n | | 21+3x+3(x-6)=9 | | 4x+6x+9=3(x+5) | | 2m-5/3=3m-1/4 | | 21+3x+4(x-6)=9 | | 9+19=2n+5 | | 2(y-4)-5y=13 | | Y=5x=36, | | 3c+2=5c-1 | | 2x+12/4=4x-3/5 | | 31=4(w+4)-7w | | 1/2n+7=n+4/2 | | 4x(x-2)=4(x2-3)-4 | | -3=-6y+3(y-7) | | 8+5a=8(a+4 | | 5x-16+x+105x-16=180 |